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What we will talk about
 



  

What we will talk about
  Isabelle with:

 
!  its System Framework
!  the Logical Framework
!  the Isabelle/HOL Environment
!  Proof Contexts and Structured Proof
!  Tactic Proofs (“apply style”)



  

 
The Isabelle 

Logical Framework (I)

 



  

Overview
! A Universal Notion of Terms & Types: 

Curry-Style Typed λ Calculus with Type-Classes
! A Universal Notion of Rule: Isabelle/Pure
! A Gentle Introduction to HOL
! Forward Proofs
! Backward Proofs
! ML-Level Proofs
! System Architecture
! Conclusion



  

Isabelle Kernel: Types and Terms
! A Typed Lambda-Calculus without frills.
! Types:

– type classes X  (* eg. order, lattice *)

– type constructors κ (* eg. bool, list,_x_*)

– type variables       [and actually schematic type variables  ?α]
– types   τ ::= prop | τ ⇒ τ  |  (τ τ"$$$" )  | κ α%%&X   " $$$" X} 

! Terms:
– variable symbols: V = {x1,x2,...}        [and actually ?V's too]

– constant symbols: C = {c1,c2,...} 

– term  ::= V::τ  |   C::τ |  term term  |  l V::τ . term  
– Isabelle offers powerful pretty-printing:  ( _ + _) t t'  == t + t'  !!



  

Isabelle Kernel: Typed Terms
! Well-typed terms (cterm's):  

the usual type inference system.

! Congruences on cterm's:
– equality on cterm is αβη congruence
– α         λ% x. t  '  λy. t[x  ↦ y]
– β         % (λx. t) t'   ' t[x  ↦ t']
– η        % (λx. t)   ' t (provided x not occuring in t)
– equality for well-typed terms decidable.



  

Isabelle Kernel: Global Contexts
! Global Contexts T, i.e. Theories, 
i.e. inductively defined sets of pairs pair of:

– Signature S (types, constants,syntax)
where  S  ' C ↦ τ 
    (a partial map from constant symbols to types τ)

– Axioms        A   (a partial map of names to “thm”s))

       where thm's  are triples:

      Γ ⊢T φ

• with a set  ofΓ  assumptions, i.e. cterm's of type prop
• with the conclusion φ, i.e. a ctem of type prop
• with T the context in which this thm is valid. 



  

Isabelle Kernel: Commands as 
global context transactions

! Theory Extensions are:
# Signature S  (types, constants,syntax)
# Axioms A  (set of formulas)

(S, A) ”∈ ” T
    command denoting global 
    context transition

(S', A') ”∈ ” T'



  

Isabelle Kernel: Commands as 
global context transactions

! Theory Extensions are:
# Signature S (types, constants,syntax)
# Axioms A (set of formulas)

(S, A) ”∈ ” T

(S + {C↦τ}, A) ”∈ ” T'

consts    <c> :: “<τ>”



  

Isabelle Kernel: Commands as 
global context transactions

! Theory Extensions are:
# Signature S (types, constants,syntax)
# Axioms A (set of formulas)

(S, A) ”∈ ” T

(S, A + {name  ↦ φ  ! $$$}) ”∈ ” T'

axiomatization <c> 
where <name>:"<φ>"



  

axiomatization <c> 
where <name>:"<φ>"

Isabelle Kernel: Commands as 
global context transactions

! Theory Extensions (roughly speaking) are:
# Signature S (types, constants,syntax)
# Axioms A (set of formulas)

(S, A) ”∈ ” T

(S, A + {name  ↦ φ  ! $$$}) ”∈ ” T'
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! Pure is a logical meta-language, i.e. the built-in 
language in which logical rules as such can be 
represented.

! It consists of typed λ#terms with constants:
# foundational types “prop” and “_ => _” (“_ ⇒_”) 
# the Pure (universal) quantifier
          all :: “(α ⇒ Prop) ⇒ Prop”

      (“⋀x. P x”,“\<And> x. P x”   “!!x. P x”)

# the Pure implication “A ==> B” (“_  ⟹ _”) 
# the Pure equality     “A == B”     “A  B”≡  

Isabelle Kernel: 
The initial global context „Pure“



  

Isabelle Kernel: 
The initial global context „Pure“

! Pure is the meta-language, i.e. the built-in 
formula language (“inner syntax”).

! Equivalent notations for natural deduction rules:

  A1  (…   (A⟹ ⟹ n  A⟹ n+1)...), 

   A⟦ 1; …; An     A⟧ ⟹ n+1, 

theorem
    assumes A1

   and … 

   and An

  shows An+1 



  

Isabelle Kernel: 
The initial global context „Pure“

! Pure is the meta-language, i.e. the built-in 
formula language (“inner syntax”).

! Equivalent notations for natural deduction rules:

   (P  Q)  R :  ⟹ ⟹

   theorem
assumes "P  Q"⟹

      shows "R" 



  

Isabelle Kernel: 
The initial global context „Pure“

! Pure provides a built-in formula-language, a
is the meta-language.

! Equivalent notations for natural deduction rules:

  (⋀ a. P a  ⟹ Q a)   R : ⟹

theorem
  fixes a
   assumes “P a   Q a”⟹
  shows   R



  

Isabelle Specification Constructs

! Methodology to use only logically safe 
(„conservative“) Theory Extensions. 
These are:

# constant definition
# type definition
# constant specification
# type specification 



  

Advanced Isabelle 
Specification Constructs

! Methodology to use only logically safe 
(„conservative“) Theory Extensions. 
These are:

# datatype definition
# inductive definition
# primrec , fun  definitions
# type specification 



  

Isabelle Specification Constructs

! Constant definition:

(S, A) ”∈ ” T

(S + {c :: τ}, A + {name  ↦ c ≡ φ }) ”∈ ” T'

• where c is “fresh” in T 
• φ is closed

• φ is type variable closed

definition <c> :: “<τ>” 
where  <name>:"<c ≡ φ>"



  

Some Commands for Inspection
! Some Isabelle document commands serve

to inspect the document content. 
# checking a type expression:

        example: typ  “prop  ⇒ prop”

# checking a term expression:

                example: term  “λx. x“

prop “<τ>”           

      term “<t>”               



  

Some Statements (for Inspection)
! We can state (not yet prove) 

lemmas and theorems: 
# a lemma:

example: lemma nix:  “A  A” sorry⇒

# a theorem: 

       example: term  “λx. x“

theorem <name>: 
fixes V ... 
assumes “<φ>”
shows “<φ>” <proof>        
   

lemma <name>: “<φ>”
<proof>           



  

Exercise  demo2.thy
! Build a theory in “Main”   

(which is actually the brand-name for 
“Higher-order Logic“ (HOL) to be discussed next)

! Check some types
! Check some propositions
! State lemmas (proof by „sorry“ or „oops“)
! State a theorem in structured syntax
! State an Axiom and a Definition
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