Isabelle Tutorial:
System, HOL and Proofs

Burkhart Wol ff

Universite Paris-Sud

What we will talk about

What we will talk about

Isabelle with:

Its System Framework

the Logical Framework

the Isabelle/HOL Environment

Proof Contexts and Structured Proof

Tactic Proofs (“apply style”)

The Isabelle
Logical Framework (I)

Overview

A Universal Notion of Terms & Types:
Curry-Style Typed A Calculus with Type-Classes

A Universal Notion of Rule: Isabelle/Pure
A Gentle Introduction to HOL

Forward Proofs

Backward Proofs

ML-Level Proofs

System Architecture

Conclusion

Isabelle Kernel: Types and Terms

* A Typed Lambda-Calculus without frills.
* Types:
— type classes = (* eg. order, lattice *)
_ type constructors K (* eg. bool, list,_x_*)
— type variables [and actually schematic type variables ?a]
—types ti=prop|t=1 | (t..,0K | a:lE, .., E}
* Terms:
— variable symbols: V = {x4,xs,...} [and actually ?V's to0]
— constant symbols: C = {c1,co,...}
—term :=V:t | Cut| termterm | A Vit.term

— Isabelle offers powerful pretty-printing: (_+)tt ==t+t !l

Isabelle Kernel: Typed Terms

* Well-typed terms (cterm's):
the usual type inference system.

* Congruences on cterm'’s:
— equality on cterm is affn congruence
—a . M.t = Ay t[x— Y]
-8 (X t)t =txe t]
-1 : (A1) =t (provided x not occuring in't
— equality for well-typed terms decidable.

Isabelle Kernel: Global Contexts

* Global Contexts ®, i.e. Theories,
i.e. inductively defined sets of pairs pair of:

— Signature > (types, constants,syntax)
where £ = Cwo 1

(a partial map from constant symbols to types)

_ Axioms A (a partial map of names to “thm”s))

where thm's are triples:

« Wit
« Wit
« Wit

F|—®c|>

N a set [of assumptions, i.e. cterm's of type prop
n the conclusion ¢, i.e. a ctem of type prop

N © the context in which this thm is valid.

Isabelle Kernel: Commands as
global context transactions

* Theory Extensions are:

Sighature X (types, constants,syntax)
Axioms A (set of formulas)
(Z, A) ”E b)) @
command denoting global
@ context transition

(Z', AI) ueu o'

Isabelle Kernel: Commands as
global context transactions

* Theory Extensions are:

Sighature X (types, constants,syntax)
Axioms A (set of formulas)
(2, A) ”E b b @

@ consts <c> :: “<t>"

(2 + loot), A)"e” @

Isabelle Kernel: Commands as
global context transactions

* Theory Extensions are:

Signature X (types, constants,syntax)
Axioms A (set of formulas)
(Z, A) ”E L o)
axiomatization <c>
@ where <name>:"<¢>"

(Z,A + {name+— ¢ +..}) € @

Isabelle Kernel: Commands as
global context transactions

* Theory Extensions (roughly speaking) are:

Signature X (types, constants,syntax)

Axioms A (set of formulas)

(Z, A) ”E” o) x\(\\(°
aX|omat@§tloR\2\c>
wherg\<n>%(ﬂe> '<h>"

A
Q,\\

(Z,A + {name+— ¢ +..}) '€’

Isabelle Kernel:
The initial global context ,Pure”

* Pure is a logical metfa-language, i.e. the built-in
language in which logical rules as such can be
represented.

* It consists of typed A-terms with constants:
foundational types “prop” and *_ => _"(*_=_")
the Pure (universal) quantifier

all :: “(a = Prop) = Prop”
(“Ax. P x""\<And> x. P x” “lx. P x")
the Pure implication "A ==> B” ("_ = _")
the Pure equality “A ==B" “A=B"

Isabelle Kernel:
The initial global context ,Pure”

* Pure is the meta-lanquage, i.e. the built-in
formula language (“inner syntax”).

* Equivalent notations for natural deduction rules:

'A\1 —> (— (A — A+1)."), theorem
" " assumes A,
and ...
[A;..;Al= A,
and An
A An shows A__ .

Isabelle Kernel:
The initial global context ,Pure”

* Pure is the meta-language, i.e. the built-in
formula language (“inner syntax”).

* Equivalent notations for natural deduction rules:

(P= Q) = R: P
theorem Q
assumes "P = Q" —

B

shows "R"

Isabelle Kernel:
The initial global context ,Pure”

* Pure provides a built-in formula-language, a
IS the meta-language.

* Equivalent notations for natural deduction rules:

(ANa.Pa= Qa)= R:

fixes a
assumes "Pa = Q a”
shows R

theorem @
R

Isabelle Specification Constructs

* Methodology to use only logically safe
(,,conservative") Theory Extensions.
These are:

constant definition
type definition
constant specification
type specification

Advanced Isabelle
Specification Constructs

* Methodology to use only logically safe
(,,conservative") Theory Extensions.
These are:

datatype definition
inductive definition
primrec , fun definitions
type specification

Isabelle Specification Constructs

e Constant definition:

(Z,A)"e” 0

definition <c> :: "<t>"
where <name>:"<c = ¢>"

C +{c::t, A+ {namer c=¢}) €’ ©

* wherecis “fresh” in ®

 ¢is closed

* ¢is type variable closed

Some Commands for Inspection

* Some Isabelle document commands serve
to inspect the document content.

checking a type expression:

prop \\ <I> {4

example: typ “prop = prop”

checking a tferm expression:

term “<t>"

example: term “Ax. X"

Some Statements (for Inspection)

* We can state (not yet prove)
lemmas and theorems:

- a lemma: “ .
lemma <name>: “<¢>

<proof>

example: lemma nix: “A = A” sorry

a theorem: theorem <name>:

fixes V ...
assumes “<¢p>"
shows “<¢>" <proof>

example: term “Ax. x*

Exercise demo2.thy

Build a theory in "Main”
(which is actually the brand-name for
"Higher-order Logic” (HOL) to be discussed next)

Check some types

Check some propositions

State lemmas (proof by ,sorry" or ,,00ps")
State a theorem in structured syntax

State an Axiom and a Definition

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

